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 Status of this Memo
 
    The purpose of this RFC is to focus discussion on particular problems
    in the ARPA-Internet and possible methods of solution.  No proposed
    solutions in this document are intended as standards for the
    ARPA-Internet at this time.  Rather, it is hoped that a general
    consensus will emerge as to the appropriate solution to such
    problems, leading eventually to the adoption of standards.
    Distribution of this memo is unlimited.
 
 Abstract
 
    Most prior work on congestion in datagram systems focuses on buffer
    management.  We find it illuminating to consider the case of a packet
    switch with infinite storage.  Such a packet switch can never run out
    of buffers. It can, however, still become congested.  The meaning of
    congestion in an infinite-storage system is explored.  We demonstrate
    the unexpected result that a datagram network with infinite storage,
    first-in-first-out queuing, at least two packet switches, and a
    finite packet lifetime will, under overload, drop all packets.  By
    attacking the problem of congestion for the infinite-storage case, we
    discover new solutions applicable to switches with finite storage.
 
 Introduction
 
    Packet switching was first introduced in an era when computer data
    storage was several orders of magnitude more expensive than it is
    today.  Strenuous efforts were made in the early days to build packet
    switches with the absolute minimum of storage required for operation.
    The problem of congestion control was generally considered to be one
    of avoiding buffer exhaustion in the packet switches.  We take a
    different view here.  We choose to begin our analysis by assuming the
    availablity of infinite memory. This forces us to look at congestion
    from a fresh perspective.  We no longer worry about when to block or
    which packets to discard; instead, we must think about how we want
    the system to perform.
 
    Pure datagram systems are especially prone to congestion problems.
    The blocking mechanisms provided by virtual circuit systems are
    absent.  No fully effective solutions to congestion in pure datagram
    systems are known.  Most existing datagram systems behave badly under
    overload.  We will show that substantial progress can be made on the
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    congestion control problem even for pure datagram systems when the
    problem is defined as determining the order of packet transmission,
    rather than the allocation of buffer space.
 
 A Packet Switch with Infinite Storage
 
    Let us begin by describing a simple packet switch with infinite
    storage.  A switch has incoming and outgoing links.  Each link has a
    fixed data transfer rate.  Not all links need have the same data
    rate. Packets arrive on incoming links and are immediately assigned
    an outgoing link by some routing mechanism not examined here.  Each
    outgoing link has a queue.  Packets are removed from that queue and
    sent on its outgoing link at the data rate for that link.  Initially,
    we will assume that queues are managed in a first in, first out
    manner.
 
    We assume that packets have a finite lifetime.  In the DoD IP
    protocol, packets have a time-to-live field, which is the number of
    seconds remaining until the packet must be discarded as
    uninteresting. As the packet travels through the network, this field
    is decremented; if it becomes zero, the packet must be discarded.
    The initial value for this field is fixed; in the DoD IP protocol,
    this value is by default 15.
 
    The time-to-live mechanism prevents queues from growing without
    bound; when the queues become sufficiently long, packets will time
    out before being sent.  This places an upper bound on the total size
    of all queues; this bound is determined by the total data rate for
    all incoming links and the upper limit on the time-to-live.
 
    However, this does not eliminate congestion.  Let us see why.
 
    Consider a simple node, with one incoming link and one outgoing link.
    Assume that the packet arrival rate at a node exceeds the departure
    rate.  The queue length for the outgoing link will then grow until
    the transit time through the queue exceeds the time-to-live of the
    incoming packets.  At this point, as the process serving the outgoing
    link removes packets from the queue, it will sometimes find a packet
    whose time-to-live field has been decremented to zero.  In such a
    case, it will discard that packet and will try again with the next
    packet on the queue.  Packets with nonzero time-to-live fields will
    be transmitted on the outgoing link.
 
    The packets that do get transmitted have nonzero time-to- live
    values. But once the steady state under overload has been reached,
    these values will be small, since the packet will have been on the
    queue for slightly less than the maximum time-to-live.  In fact, if
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    the departure rate is greater than one per time-to-live unit, the
    time-to-live of any forwarded packet will be exactly one.  This
    follows from the observation that if more than one packet is sent per
    time-to-live unit, consecutive packets on the queue will have
    time-to-live values that differ by no more than 1.  Thus, as the
    component of the packet switch that removes packets from the queue
    and either sends them or discards them as expired operates, it will
    either find packets with negative or zero time to live values (which
    it will discard) or packets with values of 1, which it will send.
 
    So, clearly enough, at the next node of the packet switching system,
    the arriving packets will all have time-to-live values of 1.  Since
    we always decrement the time-to-live value by at least 1 in each
    node, to guarantee that the time-to-live value decreases as the
    packet travels through the network, we will in this case decrement it
    to zero for each incoming packet and will then discard that packet.
 
    We have thus shown that a datagram network with infinite storage,
    first-in-first-out queuing, and a finite packet lifetime will, under
    overload, drop all packets.  This is a rather unexpected result.  But
    it is quite real.  It is not an artifact of the infinite-buffer
    assumption.  The problem still occurs in networks with finite
    storage, but the effects are less clearly seen.  Datagram networks
    are known to behave badly under overload, but analysis of this
    behavior has been lacking.  In the infinite-buffer case, the analysis
    is quite simple, as we have shown, and we obtain considerable insight
    into the problem.
 
    One would expect this phenomenon to have been discovered previously.
    But previous work on congestion control in packet switching systems
    almost invariably focuses on buffer management.  Analysis of the
    infinite buffer case is apparently unique with this writer.
 
    This result is directly applicable to networks with finite resources.
    The storage required to implement a switch that can never run out of
    buffers turns out to be quite reasonable.  Let us consider a pure
    datagram switch for an ARPANET-like network.  For the case of a
    packet switch with four 56Kb links, and an upper bound on the
    time-to-live of 15 seconds, the maximum buffer space that could ever
    be required is 420K bytes <1>.  A switch provided with this rather
    modest amount of memory need never drop a packet due to buffer
    exhaustion.
 
    This problem is not just theoretical.  We have demonstrated it
    experimentally on our own network, using a supermini with several
    megabytes of memory as a switch.  We now have experimental evidence
    that the phenomenon described above occurs in practice.  Our first
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    experiment, using an Ethernet on one side of the switch and a 9600
    baud line on the other, resulted in 916 IP datagrams queued in the
    switch at peak.  However, we were applying the load over a TCP
    transport connection, and the transport connection timed out due to
    excessive round trip time before the queue reached the time to live
    limit, so we did not actually reach the stable state with the queue
    at the maximum length as predicted by our analysis above.  It is
    interesting that we can force this condition from the position of a
    user application atop the transport layer (TCP), and this deserves
    further analysis.
 
 Interaction with Transport Protocols
 
    We have thus far assumed packet sources that emit packets at a fixed
    rate.  This is a valid model for certain sources such as packet voice
    systems.  Systems that use transport protocols of the ISO TP4 or DoD
    TCP class, however, ought to be better behaved.  The key point is
    that transport protocols used in datagram systems should behave in
    such a way as to not overload the network, even where the network has
    no means of keeping them from doing so.  This is quite possible.  In
    a previous paper by this writer [1], the behavior of the TCP
    transport protocol over a congested network is explored.  We have
    shown that a badly behaved transport protocol implementation can
    cause serious harm to a datagram network, and discussed how such an
    implementation ought to behave.  In that paper we offered some
    specific guidance on how to implement a well-behaved TCP, and
    demonstrated that proper behavior could in some cases reduce network
    load by an order of magnitude.  In summary, the conclusions of that
    paper are that a transport protocol, to be well behaved, should not
    have a retransmit time shorter than the current round trip time
    between the hosts involved, and that when informed by the network of
    congestion, the transport protocol should take steps to reduce the
    number of packets outstanding on the connection.
 
    We reference our earlier work here to show that the network load
    imposed by a transport protocol is not necessarily fixed by the
    protocol specification.  Some existing implementations of transport
    protocols are well-behaved.  Others are not. We have observed a wide
    variability among existing TCP implementations.  We have reason to
    suspect that ISO TP4 implementations will be more uniform, given the
    greater rigidity of the specification, but we see enough open space
    in the TP4 standard to allow for considerable variability.  We
    suspect that there will be marginal TP4 implementations, from a
    network viewpoint, just as there are marginal TCP implementations
    today. These implementations will typically work quite well until
    asked to operate over a heavily loaded network with significant
    delays.  Then we find out which ones are well-behaved.
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    Even if all hosts are moderately well-behaved, there is potential for
    trouble.  Each host can normally obtain more network bandwidth by
    transmitting more packets per unit time, since the first in, first
    out strategy gives the most resources to the sender of the most
    packets. But collectively, as the hosts overload the network, total
    throughput drops.  As shown above, throughput may drop to zero.
    Thus, the optimal strategy for each host is strongly suboptimal for
    the network as a whole.
 
 Game Theoretic Aspects of Network Congestion
 
    This game-theory view of datagram networks leads us to a digression
    on the stability of multi-player games.  Systems in which the optimal
    strategy for each player is suboptimal for all players are known to
    tend towards the suboptimal state.  The well-known prisoner’s dilemma
    problem in game theory is an example of a system with this property.
    But a closer analogue is the tragedy of the commons problem in
    economics.  Where each individual can improve their own position by
    using more of a free resource, but the total amount of the resource
    degrades as the number of users increases, self-interest leads to
    overload of the resource and collapse.  Historically this analysis
    was applied to the use of common grazing lands; it also applies to
    such diverse resources as air quality and time-sharing systems.  In
    general, experience indicates that many-player systems with this type
    of instability tend to get into serious trouble.
 
    Solutions to the tragedy of the commons problem fall into three
    classes: cooperative, authoritarian, and market solutions.
    Cooperative solutions, where everyone agrees to be well-behaved, are
    adequate for small numbers of players, but tend to break down as the
    number of players increases.  Authoritarian solutions are effective
    when behavior can be easily monitored, but tend to fail if the
    definition of good behavior is subtle.  A market solution is possible
    only if the rules of the game can be changed so that the optimal
    strategy for players results in a situation that is optimal for all.
    Where this is possible, market solutions can be quite effective.
 
    The above analysis is generally valid for human players.  In the
    network case, we have the interesting situation that the player is a
    computer executing a preprogrammed strategy.  But this alone does not
    insure good behavior; the strategy in the computer may be programmed
    to optimize performance for that computer, regardless of network
    considerations.  A similar situation exists with automatic redialing
    devices in telephony, where the user’s equipment attempts to improve
    performance over an overloaded network by rapidly redialing failed
    calls.  Since call-setup facilities are scarce resources in telephone
    systems, this can seriously impact the network; there are countries
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    that have been forced to prohibit such devices.  (Brazil, for one).
    This solution by administrative fiat is sometimes effective and
    sometimes not, depending on the relative power of the administrative
    authority and the users.
 
    As transport protocols become more commercialized and competing
    systems are available, we should expect to see attempts to tune the
    protocols in ways that may be optimal from the point of view of a
    single host but suboptimal from the point of view of the entire
    network.  We already see signs of this in the transport protocol
    implementation of one popular workstation manufacturer.
 
    So, to return to our analysis of a pure datagram internetwork, an
    authoritarian solution would order all hosts to be "well-behaved" by
    fiat; this might be difficult since the definition of a well-behaved
    host in terms of its externally observed behavior is subtle.  A
    cooperative solution faces the same problem, along with the difficult
    additional problem of applying the requisite social pressures in a
    distributed system.  A market solution requires that we make it pay
    to be well-behaved.  To do this, we will have to change the rules of
    the game.
 
 Fairness in Packet Switching Systems
 
    We would like to protect the network from hosts that are not
    well-behaved.  More specifically, we would like, in the presence of
    both well-behaved and badly-behaved hosts, to insure that
    well-behaved hosts receive better service than badly-behaved hosts.
    We have devised a means of achieving this.
 
    Let us consider a network that consists of high-bandwidth
    pure-datagram local area networks without flow control (Ethernet and
    most IEEE 802.x datagram systems are of this class, whether based on
    carrier sensing or token passing), hosts connected to these local
    area networks, and an interconnected wide area network composed of
    packet switches and long-haul links.  The wide area network may have
    internal flow control, but has no way of imposing mandatory flow
    control on the source hosts.  The DoD Internet, Xerox Network Systems
    internetworks, and the networks derived from them fit this model.
 
    If any host on a local area network generates packets routed to the
    wide area network at a rate greater than the wide area network can
    absorb them, congestion will result in the packet switch connecting
    the local and wide area networks.  If the packet switches queue on a
    strictly first in, first out basis, the badly behaved host will
    interfere with the transmission of data by other, better-behaved
    hosts.
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    We introduce the concept of fairness.  We would like to make our
    packet switches fair; in other words, each source host should be able
    to obtain an equal fraction of the resources of each packet switch.
    We can do this by replacing the single first in, first out queue
    associated with each outgoing link with multiple queues, one for each
    source host in the entire network. We service these queues in a
    round- robin fashion, taking one packet from each non-empty queue in
    turn and transmitting the packets with positive time to live values
    on the associated outgoing link, while dropping the expired packets.
    Empty queues are skipped over and lose their turn.
 
    This mechanism is fair; outgoing link bandwidth is parcelled out
    equally amongst source hosts.  Each source host with packets queued
    in the switch for the specified outgoing link gets exactly one packet
    sent on the outgoing link each time the round robin algorithm cycles.
    So we have implemented a form of load-balancing.
 
    We have also improved the system from a game theory point of view.
    The optimal strategy for a given host is no longer to send as many
    packets as possible.  The optimal strategy is now to send packets at
    a rate that keeps exactly one packet waiting to be sent in each
    packet switch, since in this way the host will be serviced each time
    the round-robin algorithm cycles, and the host’s packets will
    experience the minimum transit delay.  This strategy is quite
    acceptable from the network’s point of view, since the length of each
    queue will in general be between 1 and 2.
 
    The hosts need advisory information from the network to optimize
    their strategies.  The existing Source Quench mechanism in DoD IP,
    while minimal, is sufficient to provide this.  The packet switches
    should send a Source Quench message to a source host whenever the
    number of packets in the queue for that source host exceeds some
    small value, probably 2.  If the hosts act to keep their traffic just
    below the point at which Source Quench messages are received, the
    network should run with mean queue lengths below 2 for each host.
 
    Badly-behaved hosts can send all the datagrams they want, but will
    not thereby increase their share of the network resources.  All that
    will happen is that packets from such hosts will experience long
    transit times through the network.  A sufficiently badly-behaved host
    can send enough datagrams to push its own transit times up to the
    time to live limit, in which case none of its datagrams will get
    through.  This effect will happen sooner with fair queuing than with
    first in, first out queuing, because the badly- behaved host will
    only obtain a share of the bandwidth inversely proportional to the
    number of hosts using the packet switch at the moment.  This is much
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    less than the share it would have under the old system, where more
    verbose hosts obtained more bandwidth.  This provides a strong
    incentive for badly-behaved hosts to improve their behavior.
 
    It is worth noting that malicious, as opposed to merely
    badly-behaved, hosts, can overload the network by using many
    different source addresses in their datagrams, thereby impersonating
    a large number of different hosts and obtaining a larger share of the
    network bandwidth. This is an attack on the network; it is not likely
    to happen by accident. It is thus a network security problem, and
    will not be discussed further here.
 
    Although we have made the packet switches fair, we have not thereby
    made the network as a whole fair.  This is a weakness of our
    approach. The strategy outlined here is most applicable to a packet
    switch at a choke point in a network, such as an entry node of a wide
    area network or an internetwork gateway.  As a strategy applicable to
    an intermediate node of a large packet switching network, where the
    packets from many hosts at different locations pass through the
    switch, it is less applicable.  The writer does not claim that the
    approach described here is a complete solution to the problem of
    congestion in datagram networks.  However, it presents a solution to
    a serious problem and a direction for future work on the general
    case.
 
 Implementation
 
    The problem of maintaining a separate queue for each source host for
    each outgoing link in each packet switch seems at first to add
    considerably to the complexity of the queuing mechanism in the packet
    switches.  There is some complexity involved, but the manipulations
    are simpler than those required with, say, balanced binary trees.
    One simple implementation involves providing space for pointers as
    part of the header of each datagram buffer.  The queue for each
    source host need only be singly linked, and the queue heads (which
    are the first buffer of each queue) need to be doubly linked so that
    we can delete an entire queue when it is empty.  Thus, we need three
    pointers in each buffer.  More elaborate strategies can be devised to
    speed up the process when the queues are long.  But the additional
    complexity is probably not justified in practice.
 
    Given a finite buffer supply, we may someday be faced with buffer
    exhaustion.  In such a case, we should drop the packet at the end of
    the longest queue, since it is the one that would be transmitted
    last. This, of course, is unfavorable to the host with the most
    datagrams in the network, which is in keeping with our goal of
    fairness.
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 Conclusion
 
    By breaking away from packet switching’s historical fixation on
    buffer management, we have achieved some new insights into congestion
    control in datagram systems and developed solutions for some known
    problems in real systems. We hope that others, given this new
    insight, will go on to make some real progress on the general
    datagram congestion problem.
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 Editor’s Notes
 
    <1>  The buffer space required for just one 10Mb Ethernet with an
         upper bound on the time-to-live of 255 is 318 million bytes.
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