
www.manaraa.com

 Network Working Group John Nagle
 Request for Comments: 970 FACC Palo Alto
 December 1985

 On Packet Switches With Infinite Storage

 Status of this Memo

 The purpose of this RFC is to focus discussion on particular problems
 in the ARPA-Internet and possible methods of solution. No proposed
 solutions in this document are intended as standards for the
 ARPA-Internet at this time. Rather, it is hoped that a general
 consensus will emerge as to the appropriate solution to such
 problems, leading eventually to the adoption of standards.
 Distribution of this memo is unlimited.

 Abstract

 Most prior work on congestion in datagram systems focuses on buffer
 management. We find it illuminating to consider the case of a packet
 switch with infinite storage. Such a packet switch can never run out
 of buffers. It can, however, still become congested. The meaning of
 congestion in an infinite-storage system is explored. We demonstrate
 the unexpected result that a datagram network with infinite storage,
 first-in-first-out queuing, at least two packet switches, and a
 finite packet lifetime will, under overload, drop all packets. By
 attacking the problem of congestion for the infinite-storage case, we
 discover new solutions applicable to switches with finite storage.

 Introduction

 Packet switching was first introduced in an era when computer data
 storage was several orders of magnitude more expensive than it is
 today. Strenuous efforts were made in the early days to build packet
 switches with the absolute minimum of storage required for operation.
 The problem of congestion control was generally considered to be one
 of avoiding buffer exhaustion in the packet switches. We take a
 different view here. We choose to begin our analysis by assuming the
 availablity of infinite memory. This forces us to look at congestion
 from a fresh perspective. We no longer worry about when to block or
 which packets to discard; instead, we must think about how we want
 the system to perform.

 Pure datagram systems are especially prone to congestion problems.
 The blocking mechanisms provided by virtual circuit systems are
 absent. No fully effective solutions to congestion in pure datagram
 systems are known. Most existing datagram systems behave badly under
 overload. We will show that substantial progress can be made on the

 Nagle [Page 1]

www.manaraa.com

 RFC 970 December 1985
 On Packet Switches With Infinite Storage

 congestion control problem even for pure datagram systems when the
 problem is defined as determining the order of packet transmission,
 rather than the allocation of buffer space.

 A Packet Switch with Infinite Storage

 Let us begin by describing a simple packet switch with infinite
 storage. A switch has incoming and outgoing links. Each link has a
 fixed data transfer rate. Not all links need have the same data
 rate. Packets arrive on incoming links and are immediately assigned
 an outgoing link by some routing mechanism not examined here. Each
 outgoing link has a queue. Packets are removed from that queue and
 sent on its outgoing link at the data rate for that link. Initially,
 we will assume that queues are managed in a first in, first out
 manner.

 We assume that packets have a finite lifetime. In the DoD IP
 protocol, packets have a time-to-live field, which is the number of
 seconds remaining until the packet must be discarded as
 uninteresting. As the packet travels through the network, this field
 is decremented; if it becomes zero, the packet must be discarded.
 The initial value for this field is fixed; in the DoD IP protocol,
 this value is by default 15.

 The time-to-live mechanism prevents queues from growing without
 bound; when the queues become sufficiently long, packets will time
 out before being sent. This places an upper bound on the total size
 of all queues; this bound is determined by the total data rate for
 all incoming links and the upper limit on the time-to-live.

 However, this does not eliminate congestion. Let us see why.

 Consider a simple node, with one incoming link and one outgoing link.
 Assume that the packet arrival rate at a node exceeds the departure
 rate. The queue length for the outgoing link will then grow until
 the transit time through the queue exceeds the time-to-live of the
 incoming packets. At this point, as the process serving the outgoing
 link removes packets from the queue, it will sometimes find a packet
 whose time-to-live field has been decremented to zero. In such a
 case, it will discard that packet and will try again with the next
 packet on the queue. Packets with nonzero time-to-live fields will
 be transmitted on the outgoing link.

 The packets that do get transmitted have nonzero time-to- live
 values. But once the steady state under overload has been reached,
 these values will be small, since the packet will have been on the
 queue for slightly less than the maximum time-to-live. In fact, if

 Nagle [Page 2]

www.manaraa.com

 RFC 970 December 1985
 On Packet Switches With Infinite Storage

 the departure rate is greater than one per time-to-live unit, the
 time-to-live of any forwarded packet will be exactly one. This
 follows from the observation that if more than one packet is sent per
 time-to-live unit, consecutive packets on the queue will have
 time-to-live values that differ by no more than 1. Thus, as the
 component of the packet switch that removes packets from the queue
 and either sends them or discards them as expired operates, it will
 either find packets with negative or zero time to live values (which
 it will discard) or packets with values of 1, which it will send.

 So, clearly enough, at the next node of the packet switching system,
 the arriving packets will all have time-to-live values of 1. Since
 we always decrement the time-to-live value by at least 1 in each
 node, to guarantee that the time-to-live value decreases as the
 packet travels through the network, we will in this case decrement it
 to zero for each incoming packet and will then discard that packet.

 We have thus shown that a datagram network with infinite storage,
 first-in-first-out queuing, and a finite packet lifetime will, under
 overload, drop all packets. This is a rather unexpected result. But
 it is quite real. It is not an artifact of the infinite-buffer
 assumption. The problem still occurs in networks with finite
 storage, but the effects are less clearly seen. Datagram networks
 are known to behave badly under overload, but analysis of this
 behavior has been lacking. In the infinite-buffer case, the analysis
 is quite simple, as we have shown, and we obtain considerable insight
 into the problem.

 One would expect this phenomenon to have been discovered previously.
 But previous work on congestion control in packet switching systems
 almost invariably focuses on buffer management. Analysis of the
 infinite buffer case is apparently unique with this writer.

 This result is directly applicable to networks with finite resources.
 The storage required to implement a switch that can never run out of
 buffers turns out to be quite reasonable. Let us consider a pure
 datagram switch for an ARPANET-like network. For the case of a
 packet switch with four 56Kb links, and an upper bound on the
 time-to-live of 15 seconds, the maximum buffer space that could ever
 be required is 420K bytes <1>. A switch provided with this rather
 modest amount of memory need never drop a packet due to buffer
 exhaustion.

 This problem is not just theoretical. We have demonstrated it
 experimentally on our own network, using a supermini with several
 megabytes of memory as a switch. We now have experimental evidence
 that the phenomenon described above occurs in practice. Our first

 Nagle [Page 3]

www.manaraa.com

 RFC 970 December 1985
 On Packet Switches With Infinite Storage

 experiment, using an Ethernet on one side of the switch and a 9600
 baud line on the other, resulted in 916 IP datagrams queued in the
 switch at peak. However, we were applying the load over a TCP
 transport connection, and the transport connection timed out due to
 excessive round trip time before the queue reached the time to live
 limit, so we did not actually reach the stable state with the queue
 at the maximum length as predicted by our analysis above. It is
 interesting that we can force this condition from the position of a
 user application atop the transport layer (TCP), and this deserves
 further analysis.

 Interaction with Transport Protocols

 We have thus far assumed packet sources that emit packets at a fixed
 rate. This is a valid model for certain sources such as packet voice
 systems. Systems that use transport protocols of the ISO TP4 or DoD
 TCP class, however, ought to be better behaved. The key point is
 that transport protocols used in datagram systems should behave in
 such a way as to not overload the network, even where the network has
 no means of keeping them from doing so. This is quite possible. In
 a previous paper by this writer [1], the behavior of the TCP
 transport protocol over a congested network is explored. We have
 shown that a badly behaved transport protocol implementation can
 cause serious harm to a datagram network, and discussed how such an
 implementation ought to behave. In that paper we offered some
 specific guidance on how to implement a well-behaved TCP, and
 demonstrated that proper behavior could in some cases reduce network
 load by an order of magnitude. In summary, the conclusions of that
 paper are that a transport protocol, to be well behaved, should not
 have a retransmit time shorter than the current round trip time
 between the hosts involved, and that when informed by the network of
 congestion, the transport protocol should take steps to reduce the
 number of packets outstanding on the connection.

 We reference our earlier work here to show that the network load
 imposed by a transport protocol is not necessarily fixed by the
 protocol specification. Some existing implementations of transport
 protocols are well-behaved. Others are not. We have observed a wide
 variability among existing TCP implementations. We have reason to
 suspect that ISO TP4 implementations will be more uniform, given the
 greater rigidity of the specification, but we see enough open space
 in the TP4 standard to allow for considerable variability. We
 suspect that there will be marginal TP4 implementations, from a
 network viewpoint, just as there are marginal TCP implementations
 today. These implementations will typically work quite well until
 asked to operate over a heavily loaded network with significant
 delays. Then we find out which ones are well-behaved.

 Nagle [Page 4]

www.manaraa.com

 RFC 970 December 1985
 On Packet Switches With Infinite Storage

 Even if all hosts are moderately well-behaved, there is potential for
 trouble. Each host can normally obtain more network bandwidth by
 transmitting more packets per unit time, since the first in, first
 out strategy gives the most resources to the sender of the most
 packets. But collectively, as the hosts overload the network, total
 throughput drops. As shown above, throughput may drop to zero.
 Thus, the optimal strategy for each host is strongly suboptimal for
 the network as a whole.

 Game Theoretic Aspects of Network Congestion

 This game-theory view of datagram networks leads us to a digression
 on the stability of multi-player games. Systems in which the optimal
 strategy for each player is suboptimal for all players are known to
 tend towards the suboptimal state. The well-known prisoner’s dilemma
 problem in game theory is an example of a system with this property.
 But a closer analogue is the tragedy of the commons problem in
 economics. Where each individual can improve their own position by
 using more of a free resource, but the total amount of the resource
 degrades as the number of users increases, self-interest leads to
 overload of the resource and collapse. Historically this analysis
 was applied to the use of common grazing lands; it also applies to
 such diverse resources as air quality and time-sharing systems. In
 general, experience indicates that many-player systems with this type
 of instability tend to get into serious trouble.

 Solutions to the tragedy of the commons problem fall into three
 classes: cooperative, authoritarian, and market solutions.
 Cooperative solutions, where everyone agrees to be well-behaved, are
 adequate for small numbers of players, but tend to break down as the
 number of players increases. Authoritarian solutions are effective
 when behavior can be easily monitored, but tend to fail if the
 definition of good behavior is subtle. A market solution is possible
 only if the rules of the game can be changed so that the optimal
 strategy for players results in a situation that is optimal for all.
 Where this is possible, market solutions can be quite effective.

 The above analysis is generally valid for human players. In the
 network case, we have the interesting situation that the player is a
 computer executing a preprogrammed strategy. But this alone does not
 insure good behavior; the strategy in the computer may be programmed
 to optimize performance for that computer, regardless of network
 considerations. A similar situation exists with automatic redialing
 devices in telephony, where the user’s equipment attempts to improve
 performance over an overloaded network by rapidly redialing failed
 calls. Since call-setup facilities are scarce resources in telephone
 systems, this can seriously impact the network; there are countries

 Nagle [Page 5]

www.manaraa.com

 RFC 970 December 1985
 On Packet Switches With Infinite Storage

 that have been forced to prohibit such devices. (Brazil, for one).
 This solution by administrative fiat is sometimes effective and
 sometimes not, depending on the relative power of the administrative
 authority and the users.

 As transport protocols become more commercialized and competing
 systems are available, we should expect to see attempts to tune the
 protocols in ways that may be optimal from the point of view of a
 single host but suboptimal from the point of view of the entire
 network. We already see signs of this in the transport protocol
 implementation of one popular workstation manufacturer.

 So, to return to our analysis of a pure datagram internetwork, an
 authoritarian solution would order all hosts to be "well-behaved" by
 fiat; this might be difficult since the definition of a well-behaved
 host in terms of its externally observed behavior is subtle. A
 cooperative solution faces the same problem, along with the difficult
 additional problem of applying the requisite social pressures in a
 distributed system. A market solution requires that we make it pay
 to be well-behaved. To do this, we will have to change the rules of
 the game.

 Fairness in Packet Switching Systems

 We would like to protect the network from hosts that are not
 well-behaved. More specifically, we would like, in the presence of
 both well-behaved and badly-behaved hosts, to insure that
 well-behaved hosts receive better service than badly-behaved hosts.
 We have devised a means of achieving this.

 Let us consider a network that consists of high-bandwidth
 pure-datagram local area networks without flow control (Ethernet and
 most IEEE 802.x datagram systems are of this class, whether based on
 carrier sensing or token passing), hosts connected to these local
 area networks, and an interconnected wide area network composed of
 packet switches and long-haul links. The wide area network may have
 internal flow control, but has no way of imposing mandatory flow
 control on the source hosts. The DoD Internet, Xerox Network Systems
 internetworks, and the networks derived from them fit this model.

 If any host on a local area network generates packets routed to the
 wide area network at a rate greater than the wide area network can
 absorb them, congestion will result in the packet switch connecting
 the local and wide area networks. If the packet switches queue on a
 strictly first in, first out basis, the badly behaved host will
 interfere with the transmission of data by other, better-behaved
 hosts.

 Nagle [Page 6]

www.manaraa.com

 RFC 970 December 1985
 On Packet Switches With Infinite Storage

 We introduce the concept of fairness. We would like to make our
 packet switches fair; in other words, each source host should be able
 to obtain an equal fraction of the resources of each packet switch.
 We can do this by replacing the single first in, first out queue
 associated with each outgoing link with multiple queues, one for each
 source host in the entire network. We service these queues in a
 round- robin fashion, taking one packet from each non-empty queue in
 turn and transmitting the packets with positive time to live values
 on the associated outgoing link, while dropping the expired packets.
 Empty queues are skipped over and lose their turn.

 This mechanism is fair; outgoing link bandwidth is parcelled out
 equally amongst source hosts. Each source host with packets queued
 in the switch for the specified outgoing link gets exactly one packet
 sent on the outgoing link each time the round robin algorithm cycles.
 So we have implemented a form of load-balancing.

 We have also improved the system from a game theory point of view.
 The optimal strategy for a given host is no longer to send as many
 packets as possible. The optimal strategy is now to send packets at
 a rate that keeps exactly one packet waiting to be sent in each
 packet switch, since in this way the host will be serviced each time
 the round-robin algorithm cycles, and the host’s packets will
 experience the minimum transit delay. This strategy is quite
 acceptable from the network’s point of view, since the length of each
 queue will in general be between 1 and 2.

 The hosts need advisory information from the network to optimize
 their strategies. The existing Source Quench mechanism in DoD IP,
 while minimal, is sufficient to provide this. The packet switches
 should send a Source Quench message to a source host whenever the
 number of packets in the queue for that source host exceeds some
 small value, probably 2. If the hosts act to keep their traffic just
 below the point at which Source Quench messages are received, the
 network should run with mean queue lengths below 2 for each host.

 Badly-behaved hosts can send all the datagrams they want, but will
 not thereby increase their share of the network resources. All that
 will happen is that packets from such hosts will experience long
 transit times through the network. A sufficiently badly-behaved host
 can send enough datagrams to push its own transit times up to the
 time to live limit, in which case none of its datagrams will get
 through. This effect will happen sooner with fair queuing than with
 first in, first out queuing, because the badly- behaved host will
 only obtain a share of the bandwidth inversely proportional to the
 number of hosts using the packet switch at the moment. This is much

 Nagle [Page 7]

www.manaraa.com

 RFC 970 December 1985
 On Packet Switches With Infinite Storage

 less than the share it would have under the old system, where more
 verbose hosts obtained more bandwidth. This provides a strong
 incentive for badly-behaved hosts to improve their behavior.

 It is worth noting that malicious, as opposed to merely
 badly-behaved, hosts, can overload the network by using many
 different source addresses in their datagrams, thereby impersonating
 a large number of different hosts and obtaining a larger share of the
 network bandwidth. This is an attack on the network; it is not likely
 to happen by accident. It is thus a network security problem, and
 will not be discussed further here.

 Although we have made the packet switches fair, we have not thereby
 made the network as a whole fair. This is a weakness of our
 approach. The strategy outlined here is most applicable to a packet
 switch at a choke point in a network, such as an entry node of a wide
 area network or an internetwork gateway. As a strategy applicable to
 an intermediate node of a large packet switching network, where the
 packets from many hosts at different locations pass through the
 switch, it is less applicable. The writer does not claim that the
 approach described here is a complete solution to the problem of
 congestion in datagram networks. However, it presents a solution to
 a serious problem and a direction for future work on the general
 case.

 Implementation

 The problem of maintaining a separate queue for each source host for
 each outgoing link in each packet switch seems at first to add
 considerably to the complexity of the queuing mechanism in the packet
 switches. There is some complexity involved, but the manipulations
 are simpler than those required with, say, balanced binary trees.
 One simple implementation involves providing space for pointers as
 part of the header of each datagram buffer. The queue for each
 source host need only be singly linked, and the queue heads (which
 are the first buffer of each queue) need to be doubly linked so that
 we can delete an entire queue when it is empty. Thus, we need three
 pointers in each buffer. More elaborate strategies can be devised to
 speed up the process when the queues are long. But the additional
 complexity is probably not justified in practice.

 Given a finite buffer supply, we may someday be faced with buffer
 exhaustion. In such a case, we should drop the packet at the end of
 the longest queue, since it is the one that would be transmitted
 last. This, of course, is unfavorable to the host with the most
 datagrams in the network, which is in keeping with our goal of
 fairness.

 Nagle [Page 8]

www.manaraa.com

 RFC 970 December 1985
 On Packet Switches With Infinite Storage

 Conclusion

 By breaking away from packet switching’s historical fixation on
 buffer management, we have achieved some new insights into congestion
 control in datagram systems and developed solutions for some known
 problems in real systems. We hope that others, given this new
 insight, will go on to make some real progress on the general
 datagram congestion problem.

 References

 [1] Nagle, J. "Congestion Control in IP/TCP Internetworks", ACM
 Computer Communications Review, October 1984.

 Editor’s Notes

 <1> The buffer space required for just one 10Mb Ethernet with an
 upper bound on the time-to-live of 255 is 318 million bytes.

 Nagle [Page 9]

www.manaraa.com

